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Abstract

This project implements different types of Generative
Adversarial Networks (GANs) such as cGANs, DCGANS,
WGANSs, and our modified WGANs on our own Chinese
painting dataset to recover original paintings from edge
maps, and generate realistic-looking paintings. We also
compared the results of different GANs. Empirically, we
found that WGANs and our modified WGANs are more sta-
ble and are able to generate images with higher quality. In
particular, the modified WGANs performs well in getting rid
of the problem of mode collapse.

1. Introduction

In recent years, deep learning has been proven to be one
of the most powerful tools in artificial intelligence, and is
starting changing our lives. There are many successful ap-
plications of deep learning. For example, Google Deep-
Mind developed AlphaGo, an artificial intelligence which
teaches deep convolutional neural network to play the board
game Go [B]. Recently, AlphaGo defeated Ke Jie, world’s
top-ranked player for the third consecutive game. In the
context of computer vision, deep learning has been widely
used in face recognition, street view image recognition, im-
age retrieval, and so on.

Another interesting discussion today within deep learn-
ing is how it might impact and shape our future cultural
and artistic production. However, generating artworks is
a challenging task, especially for Chinese landscape paint-
ings. The difficulties lie in the following aspects: (a) The
background of Chinese landscape paintings are harder to
recognize, Chinese painters like to use clouds and fogs to
create a hazy atmosphere; (b) There are usually many ob-
jects such as mountain, river, bridge and fog in one Chi-
nese painting; (c) The shapes of those objects are usually
not regular; (d) There is no existing open source datasets of
Chinese paintings.

The goal of our project is to create Chinese Paintings
using deep neural network. We use Deep Convolutional
GANs (DCGANs) and Wasserstein GANs (WGANs) to
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train thousands of Chinese landscape paintings and then
synthetically generate realistic paintings. We also use con-
ditional GANs (cGANSs) to tackle the image-to-image trans-
lation problem. The input is the edge map of a painting and
we want to reconstruct that target image.

2. Related Work

GAN was first introduced by Goodfellow et al. [I0]
in 2014, in this paper, the authors use GANs to gener-
ate natural images using the MNIST [I'Z], TFD [Z3] and
CIFAR-10 [I6] datasets. It turns out that images gener-
ated by GANSs are significantly sharper than those trained
using other methods based on maximum likelihood train-
ing objectives. Later on, GANs were primarily applied to
modelling natural images and different variations of GANs
were introduced. In 2014, Mirza et al. proposed condi-
tional generative adversarial nets (cGANs) [20], which con-
trol on modes of the data being generated. However, GANs
are known to be unstable to train and often suffer from the
problem of mode collapse. In 2015, Radford proposed a
more stable architecture called deep convolutional gener-
ative adversarial nets (DCGANs) which scales up GANs
using convolutional neural networks (CNNs) to model im-
ages. Recently, Arjovsky et al. [8] defined a new form of
GANSs called Wasserstein GANs (WGANs). WGANS im-
prove the stability of learning and are able to generate im-
ages of different modes. There are many other variants of
GANSs such as LSGANs [1Y], Bayesian GANs [’5], im-
proved WGANS [IT], Cramer GANS [f].

Thanks to the strong ability of generating high-quality
images by GANS, there are lots of interesting applications
of GANSs including face generation [J], text to image syn-
thesis [27], image to image translation [T4], unpaired image
to image translation [77], auto colorization [I3], photo re-
alistic single image super-resolution [[I¥].

However, there has been very limited papers in trying
to generate artworks using GANSs, recently, ArtGANs [24]
was introduced to generate western paintings. ArtGANs use
conditional GANs based on the label information. But one
concerning is some western paintings, especially for Ab-
stract paintings, portray objects that have been “abstracted”



from nature. Those kinds of paintings might be harder for
non-experts to understand than representational paintings.
Thus it might not be easy to compare the results of Art-
GANSs with other variants of GANs visually.

3. Methods

In this section, we will first briefly review GANs and
then introduce the algorithms of several variants of GANs
such as DCGANs, WGANSs and cGANSs.

3.1. Generative Adversarial Networks

Generative Adversarial Networks (GANSs), as its name
suggests, contains two adversarial networks, a generator
and discriminator. It can be formulated as a two-player
minimax game. The generator G generates images from
random noise, i.e., it learns a mapping from a random noise
vector z to an image y, G : z — y. The discriminator D
simultaneously learns a mapping from an image x to some
values between 0 to 1, which indicates the probability that
the input comes from the true data distribution. The goal of
the discriminator D is to distinguish samples from the gen-
erative model and samples from the training data, while the
goal of G is to generate images which is indistinguishable
from those from training images (i.e., fool the discriminator
D ), the procedures are shown in Figure [ [B]. At the equi-
librium point, the generator will generate real images and
the discriminator will output probability of 0.5.
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Figure 1: Structure of GAN

To be specific, the procedure can be regarded as minimax
the following target function.

mingmaxpLean (D, G) =mingmaxpEq .. () logD(2)]
+ E.np. [log(1 — D(G(2)))]-

3.2. Deep Convolutional Generative Adversarial
Networks

Deep Convolutional Generative Adversarial Networks
(DCGANS) is an improved version of original GAN which
adds convolutional layers in both generator and discrimi-
nor’s architecture. The architecture differs from original
GAN:Ss in the following main aspects, as suggested by [21]:

e Use strided convolutions for the discriminator and
transpose convolutions for the generator.

e Use batch normalization in both generator and dis-
criminator

e Remove fully connected hidden layers for deeper ar-
chitectures.

DCGANSs is more stable than original GANs and output
sharper images, but there are still some forms of instabil-
ity. Both GANs and DCGAN:S suffer from the problems of
mode collapse and gradient vanish.

3.3. Wasserstein Generative Adversarial Networks

Wasserstein ~ Generative ~ Adversarial ~ Networks
(WGANSs) is a recently proposed GAN training algo-
rithm which has both nice theory supplement and good
empirical results on most common GAN datasets. In
theory, the loss function in original GANs uses the
Jensen-Shannon divergence (JS divergence) to characterize
the distance between the probability distribution of the
generated images P, and the real images P;. However,
if the support of the two probability measures have no
overlap, then by definition the JS divergence of P, and
P, will be a constant log2, which causes the problem of
gradient vanish. In particular, suppose the support of P,
and P, are low-dimension manifolds in finite dimension
Euclidean space, then the two measures have no overlap
support almost surely!

These insights suggest us to find another metric to char-
acterize the distance between two probability measures in
our case. It turns out that the Wasserstein distance could be
a proper choice. The Wasserstein distance of Py and P is
defined by:

W(Pdan) = Sup‘f|L§1EPdf(X) - Eng(X)a

here | |1 means | £(x) — £(y)] < |z — y| for any z,y.
Although the above formula is hard to evaluate directly,



the idea of WGANS is to use a neural network to approx-
imate the Wasserstein distance. The algorithm procedure of
WGANSs is shown in Figure & from [5].

Figure 2: Algorithm of WGAN

In particular, WGAN is different from original GAN in
the following main aspects:

e Do not apply sigmoid at the output of the discriminator
e Remove log term in the loss function
e Use RMSProp instead of ADAM

o Clip the weight of discriminator.

3.3.1 Modified Wasserstein Generative Adversarial
Networks

While training our own dataset, we found that Wasserstein
GAN generates visually better results than DCGAN, and
is much more stable. However, it seems that the images
generated by WGAN still suffer from the problem of mode
collapse, although better than DCGAN. Thus we modified
the algorithm of WGAN to the following form:

e Still apply sigmoid in the output of D, so the output of
the discriminator is still a probability

e Train the discriminator three times and train the gener-
ator twice in each iteration.

In conclusion, the difference between DCGAN:TS,
WGANSs and modified WGANSs is shown in the following
table.

Figure 3: Comparsion between DCGAN, WGAN and modified
WGAN

3.4. Conditional Generative Adversarial Networks

Conditional GANs preserves almost all the structures of
GANsS, there is still a generator GG and discriminator D and
they play a minimax game. The difference is the input of
G and D. Now the generator G learns a mapping from ob-
served image x and random noise vector z, to an image ¥,
G : (z,z) — y. Similarly, D learns a mapping from (z, y)
to [0, 1], trying to distinguish the image from training data
and the generator. The training procedure is diagrammed in
Figure @ from [I4].

Positive examples Negative examples

Real or fake pair? Real or fake pair?

G tries to synthesize fake
images that fool D

D tries to identify the fakes

Figure 4: Structure of cGAN

To be specific, the procedure can be regarded as minimax
the new target function.

mingmaxpLe.gan (D, G)
where

‘CCGAN(D7 G) :mingmaXDELprdm(x,y) [IOgD(;E, y)]
+ Eenp. ympy (v) log(1 — D(y, G(y, 2)))].

4. Dataset and Features

Since there is no previous painting generation project on
Chinese painting, it could be a problem to get the dataset.
There is a paper claiming they have made a dataset of Chi-
nese paintings and calligraphy, but provides no detail on
how to access the dataset [[[3]. We tried to contact the au-
thors but got no response yet.

We decided to get our own dataset by scraping the im-
ages on Google and Baidu. To maximize the number of



images, we tried different keywords (i.e. different types of
Chinese paintings) to search. Our keywords include guo-
hua, gongbihua, shuimohua, shanshuihua, etc. We used the
methods described in [Z6] to get the URL of the images,
and then used the code in [IZ] to download the images. Af-
ter we got the images, we preprocessed them to be the input
of the model. An image was first reshaped to be 256 x 256.
If the image is not square, the shorter side is reshaped to be
256 and the central part of the image is taken. This has
the advantage of keeping the aspect ratio of the pictures
without losing the most important information at the cen-
ter. The reshaped paintings also act as the input of DCGAN
and WGAN to generate new painting. Then, we extracted
the edges of the painting using Canny edge detection [[Z].
The preprocessing code can be found in [4]. Given pairs of
edges and paintings as inputs, we can train the cGAN model
to color the pictures. Figure B shows a pair of the painting
and the edge in our dataset, together with the original paint-
ing.

One problem of this method is that sometimes the search
engines give irrelevant or nonsense results. This happens
when you reach the end of the search results. In many cases
there seems to be a boundary between good and bad results.
We avoided downloading bad results after that boundary.
Sometimes there are bad results in the middle. We just re-
move them once they are discovered. Another problem of
this method of data acquisition is that there could be du-
plicate results from different keywords or search engines.
This changes the weight of data points in the training pro-
cess. To address this problem, we used a software called
Gimini 2 [1]. This software is very powerful, it could even
find paintings that differ in tones but are otherwise the same.
After that, we also checked if there are duplicate paintings
in the cropped files. Since the cropping methods for dif-
ferent files are the same, if their original files are the same,
the cropped should be the same, too. We wrote some script
to check if there are the same files in the cropped paintings
and we found none. In the end, we got a total of 5798 valid
paintings in the dataset.

5. Experiments and Results

5.1. Image reconstruction from edge maps using
c¢GANs

We built a base model using the convolutional network
architecture from [Z1]. Both generator and discriminator
use modules of the form Convolution-BatchNorm-ReLu.
The implementation is built from project pix2pix [8].

The dataset is divided into a training set (contains 80%
images) and a test set (contains 20% images), the whole
training procedure is done on the training set. The model is
trained by 200 epochs and the following figures present the
result of several typical test examples. During the training,

Figure 5: An example of the pre-processed data point. (a) The
original figure, (b) the cropped figure, (c) the edge of the cropped
figure.

we will feed in the edge of the Chinese painting as input,
while the target picture is the colored version of the picture
(corresponding Chinese painting). In this case, the genera-
tor is trying to learn how to reconstruct an edge image.

The first two rows of Figure B are successful examples of
our results, actually it is nearly indistinguishable between
the fake image and the real image. It is worth mentioning
that in the second example, although the sun is partially ob-
scured by the clouds, cGAN is still able to recognize the
sun and give correct colors. The third example is quite
interesting, the target image is actually a black-white im-
age, but the bird is dyed reasonably, just like it may ap-
pear in other Chinese paintings. This result indicates that
the tones and colorization methods of Chinese paintings are
learned by cGANs during training. The last two examples
are two failure examples, the object is dyed green however
the ground truth should be red. One possible explanation is
that our dataset consists many landscape paintings , while
the main objects in landscape paintings are mountains, trees
and grasses, and they are often dyed green. This may result
in errors when the test examples have bright colors like red.

Figure [ shows the losses of our model while training.

5.2. Chinese painting creation using DCGANS,
WGANSs and modified WGANs

5.2.1 Experiment Settings

The neural network structure of DCGANs, WGANSs and
modified WGANSs are basically the same. We use strided
convolutions for the discriminator and transpose convolu-
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Figure 6: Five typical examples of the training output. The left
column are our input (edge maps), the middle column are our out-
put (paintings reconstructed by cGANSs), the right column are our
target images

tions for the generator. Batch normalization is used in both
discriminator and generator. However, the —log term is re-
moved in WGAN and modified WGAN, which is different
from DCGAN. For DCGAN we use the Adam optimizer
with learning rate 0.0002, for WGAN and modified WGAN
we use RMSProp optimizer with learning rate 0.00005.

(a)

(d)

Figure 7:  (a) The loss of cGAN generator while training; (b)
The loss of cGAN discriminator while training.

The weight of discriminator is clipped into [—0.01,0.01]
in WGAN and modified WGAN, but not in DCGAN. The
output of the discriminator is a probability for DCGAN and
modified WGAN (apply the sigmoid in the discriminator),
however, the discriminator of WGAN just outputs a score,
which can be negative. The input are 3-channel images of
256 x 256 pixels in size. The code for the base DCGAN
model we used can be found here [Z].

5.2.2 Experiment Results and Comparisons

Our first experiment trained each of DCGAN, WGAN and
modified WGAN for 200 epochs, with batch size 64, and
output size 32 x 32 x 3. The final results are shown in Fig-
ure B. We found that under this setting, all these three algo-
rithms are capable to create reasonable images, but it seems
the images generated by WGAN and modified WGAN are
visually better than DCGAN. For example, about half of
the outputs of DCGAN is dyed gray, which can be consid-
ered as the color of mountains or stones, but the outputs
of WGAN and modified WGAN are obviously more col-
orful and have larger variety. Meanwhile, the outputs of
WGAN and modified WGAN are more vivid and have a
clearer outline. However, it is hard to analyze in details due
to the low pixel and large batch size of our output. There-
fore we did a second experiment, all the three algorithms
are trained for 500 epochs, with batch size 16, and output



size 256 x 256 x 3.

Figure B presents the artwork synthetically generated
by DCGANs, WGANs and modified WGANSs after 500
epochs. We can discuss the result in the following points:

e Image quality: Both three algorithms generate high-
quality images. However, comparing with WGANs
and modified GANSs, the image quality of DCGANs
is relatively poorer. WGANSs and modified GANs gen-
erate sharper lines and more colorful images than DC-
GANSs. In particular, images generated by modified
GANSs has a rich stereoscopic feeling. For example,
the image in the first row, second column in Figure B
(c) depicts the scene of a waterfall flows down from
the mountains, which is very compelling.

e Mode collapse: As shown in Figure B, DCGAN algo-
rithm has significant degree of mode collapse, more
than half of the images look similar to the painting in
the second row, first column in Figure B (a) (Iooks like
stones). WGAN performs better than DCGAN, but
still suffers from the problem of mode collapse. About
half of the images look similar to the painting in the
first row, first column in in Figure B (b) (although they
have different color styles). We did not see evidence
of mode collapse for the modified WGAN algorithm.
Thus we claim that our modified WGAN performs best
in getting rid of mode collapse among these three algo-
rithms on our Chinese landscape painting algorithm.

e Stability: From Figure T0 we find that WGAN and
modified WGAN are much more stable than DCGAN.
The shape and tone of WGAN and modified WGAN
basically stay the same during between two consecu-
tive epochs, while DCGAN outputs change drastically.

e Learning Speed: As shown in Figure [, the training
speed of modified GANs is the slowest. The shapes
of DCGAN and WGAN outputs after epoch 100 is
much clearer than modified GANs. One explanation is
comparing with WGAN, we add sigmoid in the output
of discriminator, and the derivative is o(z)(1 — o(x))
which is less than 1, this will slow down the training
procedure. This can be regarded as a downside of mod-
ified WGAN.

5.2.3 Quantitative Results

Another interesting phenomenon happens in the plots of
discriminator losses, as shown in Figure 2. The loss of
DCGAN looks fine, however, as suggested by [S5], the dis-
criminator loss should be an approximation of the Wasser-
stein distance between Py and P,, and this quantity corre-
lates well with the quality of the generated samples. How-

ever, in our examples, the losses of both WGAN and mod-
ified WGAN oscillate a lot and do not have any tendency
of convergence. On the other hand, WGAN and modified
WGAN still generate high-quality images when the number
of epochs increases.

It is unclear to us why this phenomenon happens, one
possible explanation is: the loss of the discriminator is still
an approximation of Wasserstein distance, therefore in our
case maybe the neural network we use does not provide an
accurate approximation to sup ¢, _ Ep, f(X)—Ep, f(X),
the Wasserstein distance between Py and P (basically we
are using composition of linear and nonlinear functions to
approximate the best f for Wasserstein distance, but the ba-
sis functions we used in our neural network may not be a
suitable choice), thus the loss does not seem to have corre-
lation with the quality of the output images. The loss oscil-
lates might because the discriminator is competing with the
generator while training.

If the above explanation makes sense, then a natural
question is: is there a way to build the discriminator such
that it could approximate the Wasserstein distance pretty
well? This question may be of interest to both theorists and
practitioners.

6. Conclusion and future work

We implement different GAN algorithms on our own
Chinese painting dataset. The cGAN algorithm for im-
age reconstruction works pretty well overall, the algorithm
could learn the tones and colorization methods of Chinese
paintings. As for artwork generation, we implemented DC-
GAN, WGAN and our modified WGAN algorithms and
compared them. Empirically, WGAN and modified WGAN
create visually better images than DCGAN, and are much
more stable than DCGAN. Meanwhile, modified WGAN
performs best in creating larger varieties of paintings, which
may suggest it could be a candidate to solve the mode col-
lapse problem. However, quantitatively, WGAN and modi-
fied WGAN have oscillated loss functions, which does not
have strong positive correlation with the quality of the out-
put images. This phenomenon is different from [5] and the
reason behind this is still open to us.

In the future, there are several things that are worth try-
ing. First we could implement our modified WGAN on
other datasets to see if it is still robust in providing large va-
riety of outputs, or explain this theoretically. Then we could
keep investigating the reason of the oscillated discriminator
loss of WGAN and try to catry out a reasonable explanation.
Last but not least, we could explore other kinds for GANs
(maybe use the total variation distance, Hellinger distance
or Levy-Prokhorov distance) that may lead to promising
empirical results.
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Figure 8: 32 x 32 x 3 output after 200 epochs. Left: DCGAN, middle: WGAN, right: modified WGAN
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Figure 9: 256 x 256 x 3 output after 200 epochs. Left: DCGAN, middle: WGAN, right: modified WGAN
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Figure 10: Results of three consecutive epochs. Left: DCGAN,
middle: WGAN, right: modified WGAN
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Figure 11:  The results after epoch 100 using DCGAN (left),
WGAN (middle), modified WGAN (right) respectively.
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Figure 12: (a) D loss of DCGAN, (b) D loss of WGAN, (c) D
loss of modified WGAN.
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